MIT Beaver Works Summer Institute

MIT Beaver Works Summer Institute 2020

VIRTUAL HIGH SCHOOL PROGRAM

- BAE Systems Project
 - Autonomous RACECAR Grand Prix
- Raytheon Intelligence & Space Project
 - Autonomous Cognitive Assistant
 - Data Science for Health & Medicine
- Sierra Nevada Corp Project
 - Build a CubeSat
- MITRE Project
 - piPACT A BWSI Independent Project
 - Embedded Security and Hardware Hacking
 - Remote Sensing
 - Serious Game Design and Development with AI

Logos of AEROASTRO, BEAVER WORKS, CSAIL, EECS, MITCHE, LINCOLN LABORATORY, and Open Learning.
Dear Friends, Family, and Engineering Enthusiasts,

The brochure below includes all the information on the 2020 Beaver Works Summer Institute, virtual program! Due to the COVID-19 situation we had to cancel the onsite portion of our program this summer, but we are excited to offer several of our most popular classes in an online only format. We are looking forward this summer to pushing the boundaries of BWSI with our instructors and students. This new format will be an important first step in making the incredible BWSI content available to broader audiences.

The MIT Beaver Works Summer Institute is a rigorous, world-class STEM program for talented rising high school seniors. BWSI started in 2016 with a single class and has grown exponentially since. The 2019 program featured ten project-based, workshop-style courses: Autonomous RACECAR Grand Prix, Autonomous Air Vehicle Racing, Autonomous Cognitive Assistant, Data Science for Health and Medicine, Build a CubeSat, UAS-Synthetic Aperture Radar (UAS-SAR), Embedded Security and Hardware Hacking, Designing for Assistive Technology, Remote Sensing for Disaster Response, and Hack a 3D Printer.

The 2020 MIT Beaver Works Summer Institute was a complete success thanks to the enthusiasm of our students, the dedication of our instructors, and the hard work of our team members. We initially planned to offer a dozen high school courses and three middle school classes onsite at MIT campus, but when COVID-19 prevented in person participation many of our instructors were able to quickly revamp their course content for remote instruction. We partnered with many high schools to recruit future engineers to participate in our program, and had the pleasure of working with 178 students from 101 high schools across the country for the seven courses offered this year. We also offered an independent project, piPACT, focused on technology for automated contact tracing of COVID-19 transmission which ran concurrently with the BWSI courses and 175 students from 128 high schools participated.

In the coming years, we will integrate new programs into this initiative, and make the summer program content available broadly. We are supporting middle and high school STEM teachers who use our teaching materials to help better prepare their students for college and beyond. We will also help other universities and high schools create similar programs, working to build a network of institutes to collectively improve engineering education worldwide. While the movement to an online only BWSI this summer was a difficult decision, it will accelerate the development of a more modular and portable course content that can be shared widely and have a greater impact on our leaders of tomorrow.

Thank you for the continued support of our program.

The MIT Beaver Works Summer Institute Staff
What Is Beaver Works Summer Institute?

The MIT Beaver Works Summer Institute (BWSI) is a rigorous, world-class STEM program for talented students who will be entering their senior year in high school. The four-week program teaches STEM skills through project-based, workshop-style courses. BWSI began in 2016 with a single course offered to 46 students, a mix of local daytime students and out-of-state residential students. In this course, RACECAR (Rapid Autonomous Complex Environment Competing Ackermann steering), students programmed small robotic vehicles to autonomously navigate a racetrack.

The positive student reaction to our hands-on learning style led to the expansion of the program to include two new courses in 2017. To make sure students had the STEM background to participate fully in the three courses, the BWSI instructors developed online tutorials that students had to complete as a prerequisite for applying for the summer program. The new courses were Autonomous Air Vehicle Racing and Autonomous Cognitive Assistant. In 2017, 98 students from 49 high schools nationwide enjoyed BWSI.

In 2018, we grew again. This year, we had eight courses, adding five ones; each new course is developed with a requisite online tutorial. The 2018 class of BWSI boasted 198 young people from 106 high schools from across the country and Puerto Rico.

In 2019, we grew yet again and added two new courses to our eight. The 2019 class of BWSI grew to 239 students from 158 high schools across the country and Puerto Rico. As in the previous two years, we have had teams from Massachusetts and outside the United States participate in our RACECAR Grand Prix after they completed the course curriculum on their own.

In 2020, we were planning on 12 courses with additional programs in cybersecurity and game development. We will be offering 7 courses and 1 independent project virtually thanks to substantial efforts to shift the onsite program. These are described in more detail later in the pamphlet.

Expansion in the coming years will focus on developing new courses and working with collaborators to scale up the program nationally and internationally. We will continue to advise high school STEM teachers who want to incorporate the BWSI concepts and materials into their classrooms. Our vision is a broad network of BWSI-like programs that will help improve engineering education, and toward that goal, we will share our work and ideas with universities and schools worldwide.

Contact us at bwsi-admin@mit.edu for information on how to adopt this program into your school curriculum.

BWSI 2020 Timeline of Program requirements.
What is Beaver Works?

Beaver Works is a joint venture between MIT Lincoln Laboratory and the MIT School of Engineering that is envisioned as an incubator for research and innovation. Beaver Works facilitates project-based learning, a hallmark of an MIT education, and leverages the expertise and enthusiasm of MIT faculty, students, researchers, and Lincoln Laboratory staff to broaden partnerships across both institutions.

The Beaver Works center located in Cambridge, Massachusetts, provides these facilities: areas for collaborative brainstorming; workshops and tools for fabricating prototype systems; and space for classroom-style instruction. Beaver Works allows students to address real-world problems and issues, engages students in hands-on learning, and demonstrates an effective strategy for teaching complex engineering concepts.

Beaver Works supports MIT student involvement in a range of research and educational pursuits, including two-semester, course-based capstone projects; joint and individual research initiatives; and Undergraduate Research Opportunities Program internships. Students involved in these projects develop innovative solutions to real-world problems and gain an exceptional experience in hands-on learning from world-class researchers.

In addition to the Summer Institute, Beaver Works is also extending project-based learning opportunities to local K–12 schoolchildren. Among these offerings have been a robotics workshop for an all-girl FIRST (For Inspiration and Recognition of Science and Technology) LEGO League team, a hands-on camera-building activity for high-school girls, and LLRISE, a one-day workshop on radars for students in middle school.
MIT Beaver Works Summer Institute
2020 Summer Program: Course Overview

The MIT Beaver Works Summer Institute will consist of the following courses. For more information on each course, see the following pages in this brochure.

Autonomous RACECAR Grand Prix
Beaver Works Summer Institute will offer students, each with its own MIT-designed RACECAR robot, the opportunity to explore the broad spectrum of research in autonomy; learn to collaborate, and demonstrate fast, autonomous navigation in a Mini Grand Prix to **Move... Explore... Learn...Race!**

Autonomous Cognitive Assistant – BAE Systems Project
Beaver Works Summer Institute will offer students an opportunity to learn about the cutting-edge in machine learning. Cog*Works consists of project-based modules for developing machine learning apps that leverage audio, visual, and linguistic data. Students will work with experts in these fields to learn foundational mathematical, programming, and data analysis skills, which will enable them to create their own algorithms and neural networks from scratch. Ultimately, they will design their own cognitive assistants.

Build a CubeSat – Sierra Nevada Corp. Project
Beaver Works Summer Institute will offer students the opportunity to design, build, and test a prototype CubeSat. Students will explore all the major subsystems of a satellite and get hands on experience with mechanical, electrical, and software engineering. The class will use these new skills to demonstrate a real CubeSat science mission in partnership with scientists from Woods Hole Oceanographic Institution.

Medlytics (Data Science for Health Medicine) – Raytheon I&S Project
Beaver Works Summer Institute will give students a chance to explore the exciting intersection of data science and medicine. Students will build a solid foundation in the fundamentals of probability and statistics, and learn the basics of coding and machine learning techniques through a series of online teaching modules. During the summer, students will work in groups to gain hands-on experience applying advanced machine learning and data mining to solve real-world medical challenges.

Embedded Security and Hardware Hacking – MITRE Project
Beaver Works Summer Institute will cover several cybersecurity topics with a focus on threats that are especially concerning for embedded systems. These topics include embedded software security, JTAG and UART probing, side-channel analysis, and fault-injection. This background will help prepare students for the summer course, during which
they will design and perform security assessments of multiple implementations of an embedded system. They will learn the basics of embedded security and hardware hacking by designing a secure system and performing security assessments of classmates’ designs to see who can find and fix the most security flaws.

Remote Sensing For Disaster Response
Beaver Works Summer Institute Remote Sensing program will offer students the opportunity to explore the exciting intersection of data science and disaster response. The program consists of two components: (1) online course from January to May 2020, open to all interested and committed students; and (2) a four-week virtual summer program. During the course, the students will learn to understand the basics of Python, Git, GIS, machine learning, and image processing through a series of online teaching modules. Students will explore real world datasets featuring disaster imagery from both satellites and aerial platforms. Students in this course will develop experience in an area of data science that is poised to play a critical role in understanding our world.

Serious Game Development with AI
This course will introduce students to the process of game design with the application of Artificial Intelligence to game play. Very specifically, the course will focus on unconventional approaches to understand and address real world problems (e.g., designing a game about zombies to study the effects of public health policies with respect to chemical or biological terrorist threats.) The program will consist of an intensive dive into the key aspects of serious gaming including: experimental design, game design, and application development. The course will examine and categorize different types of games, how to extract useful data, an introduction to User Interface design, rules development and play testing. Students will focus on coding both a portion of the game back-end as well as self-designed extensions. With the assistance of instructors and Teaching Assistants, participants will learn about how Artificial Intelligence can impact the design of experiments and contrast with natural, human-centric game play. All students will participate in both back-end development, within a game-ready python framework, as well as coding of their own extensions.

piPACT: BWSI Independent Project
Beaver Works Summer Institute will offer students the opportunity for an independent project this year. Based on the technologies used to develop private automatic contact tracing (PACT) for minimizing the spread of diseases, like COVID-19, students can learn about the technologies behind wireless communication and radio wave propagation, while programming Raspberry Pi’s and analyzing their data. This project provides real-world experience in research and development as they are developing and testing hypotheses based on what they’ve learned using rigorous analysis techniques to answer important questions.
Driverless vehicle technology has been growing at an exponential pace since the DARPA Grand and Urban Challenges pushed the state of the art to demonstrate what was already possible. Commercial interest and aggressive development are being driven by Google, Toyota, Tesla, Continental, Uber, Apple, NVIDIA, and many other companies. There is no single technology or “killer app” available to solve the myriad perception, understanding, localization, planning, and control problems required to achieve robust navigation in highly variable, extremely complex and dynamic environments. This summer, Beaver Works Summer Institute will offer nine teams of five students, each with its own MIT-designed RACECAR (Rapid Autonomous Complex Environment Competing Ackermann SteerRing) robot, the opportunity to explore the broad spectrum of research in these areas, and learn to collaborate, and demonstrate fast, autonomous navigation in a Mini Grand Prix to Move... Explore... Learn... Race!

This program consists of two components, all virtual: a prerequisite, online course from January to May open to all interested students and an intensive four-week virtual program from July 6 to July 31 for a select group of students. The prerequisite component gives students a background in the basic concepts and tools that will be used during the summer program. The Robot Operating System (ROS) provides a rich set of tools that may be programmed at a high level with the Python programming language. Students will also have the opportunity to program a simulated RACECAR in rviz, which will allow them to develop skills and demonstrate the basic concepts without requiring a physical RACECAR.

Completing the prerequisite curriculum will prepare students to cover the topics of Control Systems, Computer Vision, Localization, Planning, and Navigation at a more advanced
level in the virtual summer program. The robotic platform used in the course is the RACECAR Model Nano (RACECAR-MN), which is capable of achieving speeds of 30 mph, utilizing data from real sensors processed with an onboard NVIDIA Jetson Nano embedded computer. The RACECAR-MN is a small-scale, MIT-designed robotic system. Beaver Works will lend out a complete RACECAR-MN hardware kit to students who are accepted into the program, to participate in the first-ever, virtual RACECAR summer program. Students will receive all of the hardware and materials required to participate in the course from their own homes.

A team of experienced MIT researchers and instructors will give live lectures, covering material on autonomy fundamentals and expanding on advanced topic areas in the lecturers’ expertise. A series of graduated exercises, hands-on labs, and weekly challenge demonstrations will be provided to lead students through the process of developing their solutions to the fundamental problems. Additionally, guest lecturers from leading researchers in the computer science, engineering, and autonomous vehicle academic and corporate communities will provide students with insight into emerging trends in these fields. The instructors will be available throughout the program to help with debugging.

Prerequisite Course

The online component for the Autonomous RACECAR course contains important introductory material to provide students with the background required to successfully complete the four-week summer course. A virtual machine image is provided for students to download and use on their own computers, with necessary tools preinstalled, so that they can work through both the introductory and more advanced topics and explore problems specific to autonomous vehicles.

Introduction and Prerequisites

- Installing and using the virtual RACECAR Docker image
- Reviewing the overview of the Ubuntu/Linux environment
- Learning the basics of Python programming
Completing an introduction to the Robot Operating System

Autonomous Vehicles
• Using the RACECAR model in the rviz simulation environment
• Studying basic control systems
• Studying fundamentals of computer vision using the OpenCV library
• Acquiring elementary navigation and planning concepts

Summer Virtual Course
The four-week summer program is based on the BWSI 2019 course, with additional online material that prepares students to begin the summer course at a more advanced level. The curriculum is being expanded this year to emphasize the use of computer vision and machine learning techniques in autonomous navigation.

Each day in the course will consist of a mix of lectures and hands-on projects to reinforce and apply the material. The tentative schedule for each week is listed below:

Week 1: Setup…
• Meet the Instructors and TAs
• Setup your laptops for virtual lectures
• Setup and test your RACECAR-MN

Week 2: Move…
• RACECAR-MN system operation and sensors
• Robot Operating System principles
• Basic motion control and simple obstacle avoidance

Week 3: Explore…
• Computer vision techniques
• Vision-based blob, target, and object detection
• Visual navigation

Week 4: Learn…
• Mapping unknown environments
• Planning paths to achieve goals
• Navigating in dynamic environments

Week 4 (End): Final Project/Competition!
At the end of the program, you will take part in a final project or competition, as facilitated by the instructors. This will give you a chance to expand on what you know and share what you’ve learned with your classmates across the country!
Program Overview

Artificial intelligence research has achieved a dramatic resurgence in recent years, as innovation of novel deep learning and other machine learning tools has enabled machine performance surpassing humans in specific cognitive tasks. New records in “machine thinking” seem to be set almost daily. This summer, the BWSI is offering students a chance to learn and use the state-of-the-art machine learning tools in a program called Cog*Works: Build your own Cognitive Assistant. The program will guide students in learning and applying the foundational technologies of artificial intelligence for building cognitive assistants. Students who have successfully completed the online course will be considered for participation in the summer program in which teams of students will leverage professional cognition services (e.g., Amazon Alexa/Echo) and open-source tools in conjunction with their own machine learning tools to develop cognitive systems. The program will be divided into modules during which students will implement and explore algorithms in core areas of natural language processing and machine cognition. These capabilities will be composed to create end-to-end cognitive assistants that will compete against each other at the end of the program.

This program consists of two components: (1) online course from January to May 2020, open to all interested and committed students, and (2) a four-week virtual summer program for a small group of students, July 6–July 31. During the course, the students will be trained to understand the basics of Python, Git, natural language processing, and machine learning through a series of online teaching modules. Students will build services that are both functional and fun. By participating in the online and/or onsite portion of the program, students will develop experience in an area of computer science that is poised to play a critical role in shaping future technologies and applications across many industries.
Online Course
The online component for the Cog*Works course will contain important introductory material that will provide students with the background required to successfully complete the four-week summer course. In addition to the introductory material, the online course will include more advanced machine learning-specific material that will enable students to begin exploring problems specific to cognitive assistants.

Introduction and Prerequisites
- Introduction to Python
- Git & Github management tools
- Perspectives on machine learning

Autonomous Cognitive Assistants
- Advanced NumPy
- Simple image classification with Python
- Introduction to neural networks
- Introduction to Web Services
- Introduction to Microsoft Cortana©, and Amazon Alexa© services
Summer Course

The four-week summer component of the BWSI Cog*Works course aims to guide students through the process of creating their own cognitive assistants. Daily lectures from course instructors and guest speakers will solidify and expand upon the content from the online portion of the course. Students will collaborate in small groups to complete milestone projects that are based on their lecture materials. These projects will allow for creative customization and enhancements from the students, and weekly awards will be given to the group(s) with the most "interesting" projects. Ultimately, these projects will serve as the components that compose an end-to-end cognitive assistant.

The following is a rough outline for the summer course:

Week 1: Audio

- Python/NumPy/Github review
- Audio recording, sampling, and encoding
- Discrete Fourier transforms and their applications
- Pattern recognition in audio data
- Audio capstone project

Week 2: Visual

- Review of machine learning concepts
- Coding your own autograd library
- Training dense neural networks
- CNNs and RNNs
- Visual capstone project

Week 3: Language

- Representing written language numerically
- Document comparison and summarization
- Training a language model
- Training word embedding
- Information retrieval
- NLP capstone project

Week 4: Challenges

- Customize your own neural network
Program Overview

Data mining and machine learning have become ubiquitous in the age of “big data,” and for good reason: advanced learning algorithms take advantage of ever-growing compute capacity and vast amounts of data to solve complex problems that can often meet or exceed human ability. These techniques are being embraced in nearly every sector including financial trading, cybersecurity, entertainment, advertising, autonomous vehicles, and of course health and medicine. The increasing adoption of electronic health records, mobile health apps, and wearable technologies continues to generate troves of rich, real-time, high-resolution data. This data is now being used to train algorithms to help physicians build prognostic models, conduct medical image analysis, and improve diagnostic accuracy.

In 2020, the BWSI Medlytics program will offer students the opportunity to explore the exciting intersection of data science and medicine. The program consists of two components: (1) online course from January to May 2020, open to all interested and committed students; and (2) a four-week virtual summer program hosted by MIT for a group of 20-25 students from July 6—July 31. The online course will help students build a solid foundation in the fundamentals of probability and statistics, and provide an introduction to coding and machine learning techniques through a series of online teaching modules. During the summer, students will work in groups to gain hands-on experience applying advanced machine learning and data mining to solve real-world medical challenges.

Online Course

The online component for the BWSI Medlytics course contains important introductory material to provide students with the background required to successfully complete the four-week summer course. In addition to the introductory material, the online course will expose students to real-world data and machine learning techniques, and introduce some of the challenges and opportunities of combining the two.
Introduction
- Perspectives on the challenges of working with medical data
- Probability & statistics
- Introduction to coding: Python, Git, Jupyter

Data Science for Health and Medicine
- Defining a patient cohort
- Correlation and regression; noise vs. outliers
- Beginner machine learning: supervised and unsupervised algorithms
- Introduction to time series data analysis
Summer Course

The four-week summer component of Medlytics will take a deep-dive into the application of data analytics to structured data, physiological signals, and medical imagery. Prepared course material, case studies, and small-group projects will expose students to some of the challenges inherent to working with medical data and introduce them to state-of-the-art machine learning tools. Students will compete in weekly challenges and participate in a final capstone project from concept proposal to live demonstration.

The following is a rough outline for the summer course:

Week 1: Introduction to Diagnostic Research and Machine Learning
- Research questions, hypotheses and objectives
- Structured data processing and plotting in Python
- Classification evaluation and metrics
- Supervised machine learning
- Clinical Data Challenge 1: Diagnosing Hypothyroidism

Week 2: Signals Processing and Deep Learning
- Introduction to signals processing
- Fourier transforms
- Machine learning for time-series data
- Artificial neural networks
- Clinical Data Challenge 2: Classifying Sleep Stages

Week 3: Image Processing and Advanced Data Analytics
- Computer vision applications in medicine
- Texture classification using convolutional neural networks
- Transfer learning
- Clinical Data Challenge 3: Analyzing Mammograms

Week 4: Capstone Project
In the final week of the course, students will work in teams to propose, design, and demonstrate a health application prototype, leveraging the lessons learned from weeks 1-3.
Program Overview

In 2020, this BWSI course is dedicated to space but grounded in science. The course will partner with Woods Hole Oceanographic Institution (WHOI) to tackle a real-world ocean science mission. Based around a 1U CubeSat (10 cm x 10 cm x 10 cm), the four-week course will guide the class through the design trades, assembly, and testing of a CubeSat with an imaging payload. The program will consist of two components. The first is a series of online courses teaching the basics of satellite development coupled with computer-driven exercises that will allow the class to perform key design trades for the mission involving communication, power generation and usage, size, mass, and performance. The four-week summer program will review the key points from the online course and add in lessons on how to handle and test hardware before assembling and testing a working CubeSat prototype. During the summer course, students will work with Lincoln Laboratory staff and MIT graduate students to gain hands-on experience in building a space system.

The progression of miniature electronics coupled with the availability of launch rideshares provides access to space for a wide range of organizations that weren’t able to dream of such capability 20 years ago. The advent of the CubeSat standard by Bob Twiggs and Jordi Puig-Suari in 1999 opened up real, achievable access to space for student projects that allows for hands-on development experience for the next generation of scientists and engineers.

Online Course
The online component for the BWSI CubeSat course contains important introductory material to provide students with the background required to successfully complete the four-week
Introduction and Prerequisites
- Why we go to space?
- Basics of rockets and orbital dynamics (using Systems Toolkit)
- Spacecraft subsystems

Satellite Design Work
- Spacecraft systems design trades
- The space environment
- Satellite engineering tools
- Laboratory safety

Summer Course
The four-week summer component of BWSI CubeSat will focus on building and testing spacecraft hardware. Daily lectures will review the basics with the students, and guest lectures on key spacecraft systems will be given. With hardware kits at home, students will split into teams to get hands-on exposure to hardware testing, assembly, and programming. Students will be mentored by Lincoln Laboratory staff, and MIT faculty and graduate students, and WHOI engineers and scientists.

The following is a rough outline for the summer course:
Week 1: “Space, The Final Frontier” Hardware Basics and Systems Engineering
- Space systems 101
- Basic hardware safety and handling
- Fundamentals of systems engineering

Week 2: Spacecraft Subsystems
- Testing and assembly of all subsystems
- Payloads and camera performance
- Communication and power
- Software, the glue that holds it all together

Week 3: “Houston We Have A Problem” Making It All Work Together
- Subsystem integration
- System and software testing
- Mission planning, attitude determination
- Debugging and testing a flight system

Week 4: Test Flights and Analysis
- Final functional testing
- Simulated “flight”
- Evaluate mission performance
Program Overview

Most of us are aware of our reliance on computers throughout our everyday lives, but what we typically think of as computers (from the servers that run our favorite websites, to our laptops and smartphones) are only the tip of the iceberg. Hidden just beneath the surface is a substantial and diverse group of computers referred to as embedded systems. Although the concept may be unfamiliar to many, embedded systems are pervasive and have existed for decades. They commonly work within larger pieces of technology, performing specific tasks, such as operating one element of a car, medical device, aircraft, or even a musical instrument. Their security affects the security of the larger system. And they are being hacked!

This program consists of two components: an online course from January to May open to all interested students, and a four-week virtual summer program from July 6 to July 31 for a select group of students.

The online course will introduce the students to several security topics with a focus on threats that are especially concerning for embedded systems. These topics include embedded software security, JTAG and UART probing, side-channel analysis, and fault-injection. This background will help prepare students for the summer course, during which they will design and perform security assessments of multiple implementations of an embedded system. They will learn the basics of embedded security and hardware hacking by designing a secure system and performing security assessments of classmates’ designs to see who can find and fix the most security flaws.
Online Course
The online component for the Embedded Security and hardware hacking course contains important introductory material to provide students with the background required to successfully complete the four-week summer course.

The online course will consist of the following modules:
- Hardware
- Embedded Software
- Programming in Python
- C programming
- Assembly
- Cryptography Basics

Summer Course
The four-week summer program is based on the MITRE Collegiate eCTF, which challenges teams of undergraduate and graduate students to design a secure system. Teams of BWSI students will design and implement their own secure systems based on a previous eCTF challenge and then hunt for security flaws in other teams’ designs. The course will consist of a mix of lectures and hands-on labs and projects that reinforce and apply the material. The detailed topics for each week are listed below:

Week 1: Cryptography and Security
- Overview of cryptography and secure design fundamentals
- Introduction of the design challenge

Week 2: Embedded Software
- Components of embedded systems
- Embedded software security basics

Week 3: Hardware Analysis
- Hardware and interface analysis
- Introduction to side-channel analysis and fault attacks

Week 4: Hack!
- Teams will compete to see who can score the most points — earned by capturing virtual “flags”, by demonstrating flaws in the target systems, and by fixing the flaws to secure the system.
Program Overview

Imagine coordinating a response after the chaos of a hurricane or the challenges of a famine lasting years, these big problems require big data to solve. With airplanes and satellites, we collect mountains of data of affected regions but who looks at this data? How do we turn this data into a physical response? The program's goal is for participants to explore, leverage, and transform open source information and imagery collected from drones, airplanes, helicopters, and satellites to generate actionable intelligence to support a disaster or humanitarian response. Students will be exposed to three main components: 1) feature extraction from raw data, 2) classification via machine learning techniques, and 3) data products for decision makers. The program will explore tools and techniques using real world operational data collected from across the globe.

In 2020, this BWSI Remote Sensing program will offer students the opportunity to explore the exciting intersection of data science and disaster response. The program consists of two components: (1) online course from January to May 2020, open to all interested and committed students; and (2) a four-week virtual summer program. During the course, the students will learn to understand the basics of Python, Git, GIS, machine learning, and image processing through a series of online teaching modules. Students will explore real world datasets featuring disaster imagery from both satellites and aerial platforms. Students in this course will develop experience in an area of data science that is poised to play a critical role in understanding our world.
Online Course
Prior to the virtual summer course, students will be required to complete an online course which contains important introductory material. The online course will give the students a strong foundation required to successfully complete the four-week summer course. In addition to foundational introductory material, the online course includes discussion of different use cases and expose students to real world challenges and applications of the coursework.

Introduction and Prerequisites

<table>
<thead>
<tr>
<th>Computer Science</th>
<th>Data Science</th>
<th>Real World Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Getting started with Python</td>
<td>• Advanced NumPy</td>
<td>• Civil Air Patrol</td>
</tr>
<tr>
<td>• Git & GitHub management</td>
<td>• Simple image classification</td>
<td>• USGS Landslide Assessment</td>
</tr>
<tr>
<td>• Machine learning perspectives</td>
<td>• Introduction to Web Services</td>
<td>• Zanzibar Mapping Initiative</td>
</tr>
</tbody>
</table>

Summer Course
The four-week summer component of aims to guide students through the processing of designing experiments to evaluate primarily text-based content. Daily course material, case studies, guest lectures, and small-group projects will expose students to challenges across technical domains.

The following is a rough outline for the summer course:

Week 1: Introduction to GIS
- Review of Python fundamentals
- Introduction to pandas, geopandas, geospatial information systems
- Research questions, hypotheses and objectives
- Working with open source tools and data

Week 2: Analysis of Geospatial Data
- Introduction to classifiers and data science
- Spatial analysis and networks
- Geospatial data sources and how to work with them

Week 3: Introduction to Image Processing
- Fundamentals of images and metadata
- Multispectral imaging
- Satellite images and analysis

Week 4: Image Classification and Decision Making
- Classify images based on contents
- Intro to optimization
- Data-driven decision making
Course Overview
This course will introduce students to the process of game design with the application of Artificial Intelligence to game play. Very specifically, the course will focus on unconventional approaches to understand and address real world problems (e.g., designing a game about zombies to study the effects of public health policies with respect to chemical or biological terrorist threats.)

Historical
Game depicting physical and social influences on infant health circa 1900

Modern
2019 BWSI students participating in hurricane disaster simulation
The recent interest in gaming as a method for acquiring data on human-machine interaction, decision making and human factors has helped establish an emerging area of research called “Serious Games”. Examples of Serious Games can include:

- Training for dangerous, expensive, or rare situations
- Evaluation of critical factors in decision making
- Cognitive assessment for injuries and diseases that affect the brain
- Systems analysis

Examples, such as Foldit, a game which adds to the body of bioinformatics knowledge by challenging users to fold proteins, can actually make a significant scientific impact. Output from the game helped scientists understand the inherent structure of a key protease in a virus which causes HIV-like symptoms. As personal computing platforms become more prevalent (who, today, doesn’t own a cell phone?) the opportunity to help tackle critical challenges by harvesting the brainpower of millions while generating fun is tantalizing.

The program will consist of a one-month, intensive dive into the key aspects of serious gaming including: experimental design, game design, and application development. The course will examine and categorize different types of games, how to extract useful data, an introduction to User Interface design, rules development and play testing.

Students will be provided a basic introduction to Agile management, and coached as they follow the timeline for development. Completing the course will provide students with an understanding of software development, project management, human factors, game design, and technical collaboration as well as the emerging fields of artificial intelligence and serious games.
Prerequisites:
- Python

Topics covered in this course:
- Systems modeling
- AI for gaming
- Ethics for AI
- Backend game development
- Game mechanics and input interfaces
- Human systems and user interfaces
- Data logging and data analysis
- Undead domain modelling
- Agile team and software practices

Course Outline:
Week 1
- Overview of serious games and their role in systems analysis and human factors
- Introduction to design of experiments
- Dev team formation
- Agile software development, healthy teams
- Backend software development starts

Week 2
- Backend software development continued
- Exploring zombie-based contamination/disease propagation models
- Role and ethics of AI in game design and development
- Novel game extension to baseline game proposal
- Public health policy overview

Week 3
- Modeling undead disease propagation
- Novel game extension development
- Human Systems Interfaces, User Interface Design, Visualizing Information,
- Data logging and analysis

Week 4
- Game code finalization
- Run the experiment (play the developed game) with data collection and analysis
- Game debut
- Final presentations and results
Expectations:
Students will focus on coding both a portion of the game back-end as well as self-designed extensions. With the assistance of instructors and Teaching Assistants, participants will learn about how Artificial Intelligence can impact the design of experiments and contrast with natural, human-centric game play. All students will participate in both back-end development, within a game-ready python framework, as well as coding of their own extensions. Introduction to supporting topics, including software development best practices for small teams, how to create user interfaces, bug and issue management, data visualization, public health and disease control, and technical presentation will be included.

Game Theme:
A single player game, which can also be played as by committee, describes the outbreak of a highly-contagious disease threatening a densely populated, urban area. Individuals who have contracted the disease have formed a zombie population which can be categorized into different archetypes. These archetypes may have different capabilities, propagation models, needs, and goals. The objective of the game will be to explore the efficacy of public health policies designed to deal with traditional disease outbreaks as applied to different infection models, methods and rates. Data analysis, such as the rate of infection compared against the implementation of different human or AI-enabled policy decisions, will provide an opportunity to visualize the results of different decision-making styles in remediating the humanitarian disaster.
Overview

The BWSI 2020 piPACT Project will provide students an opportunity to explore the technology of Bluetooth and its application to proximity detection for COVID-19 Contact Tracing. We are hoping that you will find this independent project exciting, and expect that students will learn about hypothesis development and testing, data collection and analysis, and maybe some about RF waves and digital communications.

The Primary tasks involved in this project are

1. Building a Raspberry Pi based Bluetooth signal collection platform,
2. Collecting data using this platform,
3. Developing of processing algorithms that perform the proximity detection.

As an independent project, this is driven by the student, but we have provided general project guides so that students can create a report in time for our BWSI final event. Unique to this project is that the students must develop their own hypothesis about using Bluetooth for contact tracing and determine their test regime for collecting the data to test their hypothesis.

The course ends with students submitting final reports as they would for a technical journal and these get reviewed based on meeting technical standards. The best reports will have an opportunity to present their paper at the BWSI Final Event.

Prerequisite Course

The required/taught skills for this project are basic Python skills (satisfied by the BWSIX Python online course), basic computer literacy, ability to document experimental results in a disciplined fashion, and ability to conduct independent research/exploration based on broad directions.
Like the online courses, students use a dedicated piazza forum for discussion as well as posting questions with answers and feedback from instructors as well as other students.

Project Supplies

Students are supplied two Rasberry Pi computers, cables, power supplies and the software to get started running and developing their hypotheses and algorithms. They are expected to be able to supply a laptop and a monitor to be able to program the pi’s for the data collection and analysis.

Project Schedule

Each week there will be Q&A discussions driven by students’ questions, both live and submitted through piazza. There will be additional webinar providing technology overviews as well as speakers who are experts and leaders in this area.

- **Week 1**: Project Introduction
 - Introduction to piPACT project goals, approach, logistics, and core technologies (e.g., Bluetooth)
- **Week 2**: piPACT Webinar: Dr. Marc Zissman (MIT Lincoln Laboratory)
 - Weekly Discussion setup of Raspberry Pi
- **Week 3**: piPACT Webinar: Dr. Louise Ivers (MGH)
 - Weekly Discussion : Bluetooth and RF technology
- **Week 4**: piPACT Webinar Joel Linsky, VP of Techology, Qualcomm
 - Weekly Discussion : Detection Theory
- **Week 5**: piPACT Webinar: Dr. Emily Shen (MIT Lincoln Laboratory)
 - Weekly Discussion : Data collection and analysis, hypothesis formation, and testing
- **Week 6**: Final Report Discussion: requirements and format
- **Final Event: July 31, 2020**
 - Select students will be given a chance to present their results.
BWSI Online Program Application Process for High School Student

The Beaver Works Summer Institute is pleased to announce our program offerings for virtual program for summer 2020. The following programs will be offered:

- Autonomous RACECAR Grand Prix
- Medlytics
- Build a Cubesat
- Cog*Works: Build Your Own Cognitive Assistant
- Embedded Security and Hardware Hacking
- Remote Sensing for Disaster Response
- Serious Games Design and Development with AI

To apply to one of these summer programs, you must complete the BWSI Online Education Program, designed to prepare students for the technically rigorous BWSI summer programs. To participate in the online course, a student must submit the following:

1. A nomination by a school technical point of contact (POC), typically a STEM teacher or school administrator familiar with the student’s schoolwork and technical abilities. The nomination form for the teacher/recommender can be found at https://mit-bwsi.formstack.com/forms/bwsi_nomination_onlinecourse_2020

2. The application form for the student will be sent to them once the request comes in from the teacher/recommender. Once we receive your application if your application is approved, the student will receive an email containing a user ID and password as well as instructions on how to access the online course website.

Teachers, prior BWSI students, and teaching assistants (TAs) can also apply for online course access by using the same BWSI online course request link and filling out the form.

BWSI Virtual Summer Program Application Process

Application for the BWSI Summer Program is separate from the online course application. The Summer Program application will be available Mid April 2020, with decisions expected Mid May 2020. The selection criteria for the Summer Program include, but are not limited to,

1. Demonstrated technical ability (determined through recommendation by school official and other supporting information, such as test scores, completed coursework, and grades collected in the application).

2. Demonstrated commitment to extracurricular learning via participation and completion of the online course (participation/progress are tracked by the instructors).

Students must make significant progress in the online course by Summer Program application to ensure that they are ready and well prepared for participation in the BWSI programs. Students may participate in one or more of the online courses to determine which they are interested in, but note that the online courses are time-intensive, and we suggest down selecting to a single course as early as possible.
MIT Beaver Works Summer Institute

2020 Summer Program Seminar Series
12:30pm EDT, Webinar

July 7 (Tue): Prof. Leslie Pack Kaelbling, MIT Computer Science and Engineering
Doing for our Robots What Nature did for us

July 8 (Wed): Prof. Daniela Rus, Director, MIT Computer Science and Artificial Intelligence Laboratory
Unleashing Your Inner Maker

July 9 (Thu): Dr. Jerry Wohletz, BAE Systems
Autonomous Intelligence: The AI You Don’t Know
Dr. Francesca Scire-Scappuzo, BAE Systems
One Story, Three Messages: Determination, Flexibility and Purpose

July 14 (Tue): Prof. Amos Winter, MIT Mechanical Engineering
Leveraging Technical and Socioeconomic Insights to Create Products for Developing and Global Markets

July 15 (Wed): Chris Peterson, MIT Admissions Office
How to apply to MIT (and other colleges) as a Maker

July 16 (Thu): Dr. Eric Evans, Director, MIT Lincoln Laboratory
MIT Lincoln Laboratory Overview

July 21 (Tue): Jennifer Benson, Raytheon Intelligence & Space
Laser Communications, Artificial Intelligence and Machine Learning
Major General Michael Schmidt, U.S. Air Force
Science and Technology in the U.S. Air Force: A Personal Perspective

July 22 (Wed): Dr. Simon Verghese, Waymo
Self-Driving Cars and Lidar

July 23 (Thu): Prof. Anant Agarwal, CEO, edX
A New Normal for Education

July 28 (Tue): Natalia Guerrero, MIT Kavli Institute
Worlds Beyond Our Own: New Exoplanet Discoveries by NASA’s TESS

July 29 (Wed): Prof. Julie Shah, MIT Aeronautics and Astronautics
Enhancing Human Capability with Intelligent Machine Teammates
MIT Beaver Works Summer Institute

2020 piPACT Independent Project Seminar Series
12:30pm EDT, Webinar

June 22 (Mon): Dr. Marc Zissman, MIT Lincoln Laboratory
PACT Program

June 29 (Mon): Dr. Louise Ivers, Massachusetts General Hospital
PACT: A Public Health Perspective

July 6 (Mon): Joel Linsky, Qualcomm
Bluetooth Technology

July 13 (Mon): Dr. Emily Shen, MIT Lincoln Laboratory
Privacy and Security for PACT
MIT Beaver Works Summer Institute
Class of 2020
MIT Beaver Works Summer Institute
2020 Virtual Summer Program (July 6 – 31, 2020)

MIT Advisors

Robert Bond (Chief Technology Officer, MIT Lincoln Laboratory)
Prof. Anantha Chandrakasan (Dean, MIT School of Engineering)
Dr. Melissa Choi (Assistant Director, MIT Lincoln Laboratory)
Prof. Dan Hastings (Department Head, MIT Aeronautics and Astronautics)
Prof. Asu Ozdaglar (Department Head, MIT Electrical Engineering and Computer Science)
Prof. Daniela Rus (Director of Computer Science and Artificial Intelligence Laboratory at MIT; Deputy Dean of Research, MIT Schwarzman College of Computing; Electrical Engineering and Computer Science)
Prof. Sanjay Sarma (Vice President for Open Learning, MIT; Mechanical Engineering)
Prof. Evelyn Wang (Department Head, MIT Mechanical Engineering)

Staff

Program Coordinators
Robert (Bob) Shin (Beaver Works Director, MIT Lincoln Laboratory)
Lisa Kelley (Beaver Works Summer Institute Manager, MIT Lincoln Laboratory)
Joel Grimm (Beaver Works Manager, MIT Lincoln Laboratory)
Jenn Watson (MIT Lincoln Laboratory)

David Granchelli (MIT Lincoln Laboratory)
Anthony Zolnik (MIT Department of Aeronautics and Astronautics)

Academic Directors
Prof. Sertac Karaman (MIT Department of Aeronautics and Astronautics, LIDS, IDSS)
Scott VanBroekhoven (MIT Lincoln Laboratory)
International Collaborations
Prof. Paulo Lozano (MIT Department of Aeronautics and Astronautics; Faculty Director, MIT MISTI-Mexico)

Outreach Coordinator
Andrew Fishberg (MIT Department of Aeronautics and Astronautics)
Eyassu Shimelis (MIT Lincoln Laboratory)

Communication Instructor
Jane Abbott (MIT Writing, Rhetoric and Professional Communication)

Health Professional
Dr. Charmain Jackman (Health Professional)

On-Line Course Coordinators
Julie Mullen (MIT Lincoln Laboratory)
Michael Houle (MIT Lincoln Laboratory)
Lisa Morelli (MIT Lincoln Laboratory)

Media/Public Relations Coordinators
David Granchelli (MIT Lincoln Laboratory)
Jay Couturier (MIT Lincoln Laboratory)
Erin Lee (MIT Lincoln Laboratory)
Anne McGovern (MIT Lincoln Laboratory)
Dorothy Ryan (MIT Lincoln Laboratory)

Photographers
Glen Cooper (MIT Lincoln Laboratory)
Niki Fandel (MIT Lincoln Laboratory)

IT Coordinator
John Bilodeau (MIT Lincoln Laboratory)

Publications
Rich Bushey (MIT Lincoln Laboratory)
MIT Video Productions Virtual Event Production

Clayton Hainsworth (Director, MIT Video Production)
Rod Lindheim (Production Manager, MIT Video Production)
Kevin Tierney (Streaming Manager, MIT Video Production)
Barry Pugatch (Technical Director, MIT Video Production)
Tom White (Technical Director, MIT Video Production)
Wes Richardson (Technical Director, MIT Video Production)
Tom Stift (Editor, MIT Video Production)
Alex Sachs (Editor, MIT Video Production)
Joe McMaster (Senior Producer, MIT Video Production)
Dawn Morton (Client Services Manager, MIT Video Production)
Autonomous RACECAR Grand Prix

Lead Instructors
Matthew Calligaro (Harvey Mudd College)
Emi Suzuki (Harvey Mudd College)
Eyassu Shimelis (MIT Lincoln Laboratory)

Instructor
Prof. Sertac Karaman (MIT Department of Aeronautics and Astronautics, LIDS, IDSS)

Associate Instructors
Jaden Clark (Stanford University)
Roman Herrera (Harvey Mudd College)
Kobe Lin (Harvey Mudd College)
Alina Saratova (Harvey Mudd College)
Valentina Vallalta (Harvey Mudd College)

Guest Lecturers/Instructors
Michael Berger (Madison Park Technical Vocational High School)
Malay Bhatt (East Lake High School)
Prof. Luca Carlone (MIT Department of Aeronautics and Astronautics)
Prof. Christopher Clark (Harvey Mudd College)
Autonomous Cognitive Assistant
BAE Systems Project

Lead Instructor
Ryan Soklaski (MIT Lincoln Laboratory)

Head Associate Instructor
Petar Griggs (Harvard University Department of Mathematics, BWSI 2017 Alum)

Associate Instructors
Vaishnavi Addala (MIT, BWSI 2019 Alum)
Sam Carpenter (Duke University, BWSI 2018 Alum)
Megan Frisella (Brown University, BWSI 2019 Alum)
Vishnu Penubarthi (MIT, BWSI 2018 Alum)

Guest Lecturers/Instructor
David Mascharka (Covariant)

Special Student
Darshawn Krishnaswamy (BWSI 2019 Alum)
Medlytics: Data Science for Health and Medicine
Raytheon Intelligence & Space Project

Lead Instructor

Jordan Montgomery (MIT Lincoln Laboratory)

Instructors

Jeffrey Arena (MIT Lincoln Laboratory)
Thomas Curtis (MIT Lincoln Laboratory)
Marianne Procopio (MIT Lincoln Laboratory)

Head Associate Instructor

Emily Tan (Georgia Institute of Technology, BWSI 2017, 2018 Alum)

Associate Instructors

Ujwal Pandey (Rensselaer Polytechnic Institute)
Sharvil Trifale (University of California, Berkeley, BWSI 2019 Alum)

Guest Lecturers/Instructors

Andreea Bondari, PhD (Google)
Dr. Leo Celi (Harvard Medical School)
Dr. Abdullah Chahin (Brown University)
Manya Ghobadi, PhD (MIT Computer Science and Artificial Intelligence Laboratory)
Undina Gisladottir (Blatvatnik Institute of Biomedical Informatics at HMS)
Edmarie Guzman-Velez, PhD (Harvard Medical School)
Jim Harper, PhD (Sonde Health)
Dr. Kevin Hughes (Harvard Medical School)
Dr. Paul Montgomery (Scripps Health)
Chirag Patel, PhD (Blatvatnik Institute of Biomedical Informatics at HMS)
Adam Yala (MIT Computer Science and Artificial Intelligence Laboratory)
Embedded Security and Hardware Hacking
MITRE Project

Lead Instructors
Gabriel Pascualy (MITRE)
Jake Grycel (MITRE)

Instructors
Ted Clifford (Worcester Polytechnic Institute, BWSI 2018 Alum)
Ed Krawcyzk (MITRE)

Associate Instructor
Arthur Zhang (MITRE, BWSI 2019 Alum)

Guest Lecturers/Instructors
Rachel Bainbridge (MITRE)
Eric Kedaigle (MITRE)
Build a CubeSat
Sierra Nevada Corp. Project

Lead Instructors
Rebecca Arenson (MIT Lincoln Laboratory)
Paul Fucile (Woods Hole Oceanographic Institution)

Instructors
William Blackwell (MIT Lincoln Laboratory)
Prof. Kerri Cahoy (MIT Department of Aeronautics and Astronautics)
Andrew Dahir (MIT Lincoln Laboratory)
Paul Lawson (MIT Lincoln Laboratory)
Adam Shabshelowitz (MIT Lincoln Laboratory)
Jonah Tower (MIT Lincoln Laboratory)

Associate Instructors
Mary Dahl (MIT Department of Aeronautics and Astronautics)
Jack Fox (Virginia Polytechnic Institute and State University)
Max Mazzarese (Needham High School, BWSI 2019 alum)
Joseph Patton (University of Maine)

Guest Lecturers/Instructors
David Arenson (Lockheed Martin Space Systems)
Bruce Strickrott (Woods Hole Oceanographic Institution)
Dr. Maurice Tivey (Woods Hole Oceanographic Institution)
Dr. Collin Ward (Woods Hole Oceanographic Institution)
Remote Sensing for Disaster Response

Lead Instructor
Jeffrey Liu (MIT Lincoln Laboratory)

Instructor
Rene Andres Garcia-Franceschini (MIT Department of Civil and Environmental Engineering)

Associate Instructors
Omkar Bhalerao (Cornell, BWSI 2019 Alum)
Pratyush Das (University of California, Berkeley, BWSI 2019 Alum)
Andrew Mascillaro (Olin College, BWSI 2018 Alum)
Anne Marie Stupinski (University of Vermont)

Guest Lecturers/Instructors
Chad Council (MIT Lincoln Laboratory)
Dan Ribeirinha-Braga (MIT Lincoln Laboratory)
Serious Game Design and Development with AI

Lead Instructor
Amna Greaves (MIT Lincoln Laboratory)

Instructors
Joel Kurucar (MIT Lincoln Laboratory)
Rob Seater (MIT Lincoln Laboratory)

Associate Instructors
Athreya Murali (RPI, MIT Lincoln Laboratory Student Research Assistant)
Christian Vanderloo (RPI, MIT Lincoln Laboratory Student Research Assistant)
Michael Vanderloo (Lafayette College)

Guest Lecturers/Instructors
Ben Ervine (MIT Lincoln Laboratory)
Jay Couturier (MIT Lincoln Laboratory)
Ned Rothstein (MIT Lincoln Laboratory)

Serious Game Design and Development with AI
BWSI Kwajalein

Lead Instructors
Amna Greaves (MIT Lincoln Laboratory)
Sarah Willis (MIT Lincoln Laboratory)

Instructors
Karyn Lundberg (MIT Lincoln Laboratory)
Jon Schoenenberger (MIT Lincoln Laboratory)
Tommy Sebastian (MIT Lincoln Laboratory)
PiPACT - BWSI 2020 Independent Project

Lead Instructor
Ramu Bhagavatula (MIT Lincoln Laboratory)

Instructors
John Orthoefer (MIT Lincoln Laboratory)
Jenn Watson (MIT Lincoln Laboratory)

Guest Lecturers
Dr. Louise Ivers (Massachusetts General Hospital)
Joel Linsky (Qualcomm)
Emily Shen (MIT Lincoln Laboratory)
Marc Zissman (MIT Lincoln Laboratory)
MIT Beaver Works Summer Institute
2020 Summer Program

Class of 2020

Brooke Abeles
Samuel Abramson
Evan Ackerman
Fardeen Ahmed
Anoushka Arora
Rebecca Ashmore
Julian Bain
Avik Banerjee
Drake Bauernfeind
Aditya Bhatia
Nora Bulovic
Thea Caplan
Ke Hao Chen
Michael Chen
Joshua Cheng
Samuel Cheng
Jiyoon Choi
Meghai Choudhury
Arib Chowdhury
Albert Chu
Laasya Chukka
Jinzi Danjul
Mili Das
Dmitri Demler
Vanya Dimri
Alexander Du
Hannah Epstein
Madeline Estey
Hasan Gandor
Anshul Garde
Evelyn Gaskin
Sriman Gatgeppalli
Hitaansh Gaur
Alex Gerber
Meghna Gite
Benjamin Graham
Gabriel Guo
Rachna Gupta
Ritika Gurjar
Henry Gussis
David Han
Nadine Han
Matthew Ho
Sidhanth Holalkere
Nuri Hong
Rachel Huang
Siyong Huang
Isaac Hubbard
Thomas Hughes
Alexander Hutchinson
Joohna Kwang
Sazzad Ibrahim
Edwin Ing
Anisha Jain
Jazlyn James
Andrew Jiang
He Jiang
Emma Joly
Neil Kachappilly
Dongkyun Kang
Venkatraghavan
Kannan
Evon Katz
Pranav Kesani
Ines Khouider
Katherine Kibatullin
Elenna Kim
Junha Kim
Saya Kim-Suzuki
Tiancheng Kong
Meera Kumar
Maya Kusumakar
Ethan Ky
Audrey Lee
David Lee
Ingrid Lee
Wonjun Lee
Nicholas Leung
Katriona Lexa
Ally Li
Andrew Li
Joshua Lian
Alice Liu
Benjamin Liu
Clarise Liu
Jessica Liu
Megan Liu
Rachel Liu
Jamisen Ma
Olivia Ma
Alexander Malakov
Praneeth Malayala
Claudia Markel
Emma Mascilario
Emily McCarthy
David McElfresh
Aidan Melvin
Ray Min
Rohan Mishra
Kristoff Misquitta
Nico Moldovean
Ian Morrill
Zawad Munshi
Declan Murphy Zink
Akshaya Naapa Ramesh
Jacob Nelson
Bronwen Olson
Sam O’Nuallain
Aleksy Panas
Nitya Parida
JuWon Park
Julian Parker-Sartori
Safi Patel
Clarice Pranyoto
Albert Qi
Jerry Qian
Adithya Raman
Madeline Robertson
Shruti Roy
Michael Rybalkin
Neil Sanipara
Anhad Sawhney
Yash Saxena
Aparnaa Senthilnathan
Allison Seo
Sajiv Shah
Esther Shen
Ria Sinha
Rishi Sinha
Savita Sivapalan
Corinna Skidmore
Sadiq Sobur
Gary Song
Karen Song
Matthew Song
Advika Sonti
Nidhi Sonwalkar
Charles Stephenson
Leo Stephenson
Alexander Stoyanov
Haixiang Sun
Anneliese Takeshige
Katherine Tan
Wenson Tang
Vivian Tao
Seth Taylor
Connie Tian
Simon Traub
Kaiji Uno
Armaan Vakharia
Elizabeth (Lily) Vaysman
Nitin Vegesna
Shreya Vinjamuri
Johan Vonk
Alexandra Wald
Avery Wang
Charlotte Wang
David Wang
Romario Williams
Graham Wilson
Michael Wimmer
Natalie Wong
Alexander Wu
Alice Wu
Weijia Xiao
Grace Xin
Andrew Yang
Austin Yang
Christine Yang
Jessica Yavitskiy
Emre Yavuz
Ethan Yen
Tiffany Yu
Angela Zhang
Jin Cheng Zhang
Ryan Zhang
Andrew Zhao
Kelly Zhou
Rebecca Zhu
Thomas Hughes
Embedded Security and Hardware Hacking – MITRE Project
Bronx High School of Science (New York, NY)

Alexander Hutchinson
Remote Sensing for Disaster Response
Arlington High School (Arlington, MA)

Joonha Hwang
Serious Gaming
Lynbrook High School (San Jose, CA)

Sazzad Ibrahim
Embedded Security and Hardware Hacking – MITRE Project
Brooklyn Technical High School (Brooklyn, NY)

Edwin Ing
Serious Gaming
Walter Payton College Preparatory High School (Chicago, IL)

Anisha Jain
Embedded Security and Hardware Hacking – MITRE Project
Thomas Jefferson High School for Science and Technology (Oakton, VA)

Jazmyn James
Remote Sensing for Disaster Response
South Fork High School (Palm City, FL)

Andrew Jiang
Embedded Security and Hardware Hacking – MITRE Project
Stuyvesant High School (New York, NY)

He Jiang
Medlytics
Raytheon I&S Project
Princeton International School of Mathematics (Princeton, NJ)

Emma Joly
Building a Cubesat
Sierra Nevada Corp. Project
Alabama School of Math and Science (Spanish Fort, AL)

Neil Kachappilly
Medlytics
Raytheon I&S Project
Nashua High School South (Nashua, NH)

Dongkyun Kang
Embedded Security and Hardware Hacking – MITRE Project
Bowling Green High School (Bowling Green, KY)

Venkatraghavan Kannan
Autonomous Cognitive Assistant BAE Systems Project
Detroit Country Day Upper School (Novi, MI)

Evan Katz
Autonomous RACECAR Grand Prix
Staples High School (Westport, CT)

Pranav Kesani
Autonomous Cognitive Assistant BAE Systems Project
Dougherty Valley High School (San Ramon, CA)

Ines Khoudier
Autonomous Cognitive Assistant BAE Systems Project
St Margaret’s School (Victoria, British Columbia)
Ray Min
Serious Gaming
Pine View High School for the Gifted
(Sarasota, FL)

Rohan Mishra
Autonomous Cognitive Assistant
BAE Systems Project
Thomas Jefferson High School for
Science and Technology (Herndon, VA)

Kristoff Misquitta
Medlytics
Raytheon I&S Project
Stuyvesant High School
(Forest Hills, NY)

Nico Moldovean
Building a CubeSat
Sierra Nevada Corp. Project
Boston University Academy
(Wenham, MA)

Ian Morrill
Autonomous Cognitive Assistant
BAE Systems Project
Science & Mathematics Academy
(Bel Air, MD)

Zawad Munshi
Embedded Security and Hardware
Hacking – MITRE Project
Bronx High School of Science
(Bronx, NY)

Declan Murphy Zink
Remote Sensing for
Disaster Response
Choate Rosemary Hall
(West Simsbury, CT)

Akshaya Naapa Ramesh
Medlytics
Raytheon I&S Project
Littleton High School
(Littleton, MA)

Jacob Nelson
Autonomous Cognitive Assistant
BAE Systems Project
Chantilly High School
(Chantilly, VA)

Bronwen Olson
Embedded Security and Hardware
Hacking – MITRE Project
Needham High School
(Needham, MA)

Sam O’Nuallain
Building a CubeSat
Sierra Nevada Corp. Project
Needham High School
(Needham, MA)

Aleksey Panas
Autonomous RACECAR Grand Prix
Brooklyn Technical High School
(Staten Island, NY)

Nitya Parida
Remote Sensing for
Disaster Response
Round Rock High School
(Cedar Park, TX)

JulWon Park
Medlytics
Raytheon I&S Project
Illinois Math & Science Academy
(Bloomington, IL)

Julian Parker-Sartori
Serious Gaming
Buckingham Browne & Nichols
(Belmont, MA)

Safi Patel
Autonomous RACECAR Grand Prix
Montville Township High School
(Montville, NJ)
Clarice Pranyoto
Embedded Security and Hardware
Hacking – MITRE Project
Flintridge Preparatory School
(Arcadia, CA)

Albert Qi
Embedded Security and Hardware
Hacking – MITRE Project
Noble & Greenough School
(Needham, MA)

Jerry Qian
Medlytics
Raytheon I&S Project
Ithaca High School
(Ithaca, NY)

Adithya Raman
Autonomous RACECAR Grand Prix
Northview High School
(Johns Creek, GA)

Madeline Robertson
Building a CubeSat
Sierra Nevada Corp. Project
Governor’s School for Science & Mathematics (Greenville, SC)

Shruti Roy
Remote Sensing for Disaster Response
Bridgewater-Raritan High School
(Bridgewater, NJ)

Michael Rybalkin
Autonomous RACECAR Grand Prix
Central Bucks High School East
(Jamison, PA)

Neil Sanipara
Remote Sensing for Disaster Response
Mississippi School for Math & Science (Vicksburg, MS)

Anhad Sawhney
Autonomous RACECAR Grand Prix
Lexington High School
(Lexington, MA)

Yash Saxena
Remote Sensing for Disaster Response
Plano West Senior High School
(Plano, TX)

Aparnaa Senthilnathan
Autonomous Cognitive Assistant
BAE Systems Project
Bronx High School of Science
(South Richmond Hill, NY)

Allison Seo
Remote Sensing for Disaster Response
Thomas Jefferson High School for Science and Technology (Springfield, VA)

Sajiv Shah
Building a CubeSat
Sierra Nevada Corp. Project
Saratoga High School
(Saratoga, CA)

Esther Shen
Autonomous Cognitive Assistant
BAE Systems Project
Boston Latin
(Boston, MA)

Ria Sinha
Autonomous Cognitive Assistant
BAE Systems Project
BASIS Independent Silicon Valley
(San Jose, CA)

Rishi Sinha
Remote Sensing for Disaster Response
John P. Stevens High School
(Edison, NJ)
Savitta Sivapalan
Autonomous RACECAR Grand Prix
Bronx High School of Science
(Bronx, NY)

Corinna Skidmore
Embedded Security and Hardware
Hacking – MITRE Project
Brookline High School
(Brookline, MA)

Sadiq Sobur
Serious Gaming
Bronx High School of Science
(Bronx, NY)

Gary Song
Embedded Security and Hardware
Hacking – MITRE Project
Martin Luther King High School
(Riverside, CA)

Karen Song
Medlytics
Raytheon I&S Project
Thomas Jefferson High School for Science and Technology (McLean, VA)

Matthew Song
Serious Gaming
Westford Academy
(Westford, MA)

Advika Sonti
Medlytics
Raytheon I&S Project
Massachusetts Academy of Math & Science (Boynton, MA)

Nidhi Sonwalkar
Building a CubeSat
Sierra Nevada Corp. Project
Centennial High School
(Frisco, TX)

Charles Stephenson
Remote Sensing for Disaster Response
Lafayette High School
(Lexington, KY)

Leo Stephenson
Autonomous Cognitive Assistant
BAE Systems Project
School for the Talented and Gifted at the Yvonne A. Ewell Townview Magnet Center, (Dallas, TX)

Alexander Stoyanov
Embedded Security and Hardware
Hacking – MITRE Project
Belmont High School
(Concord, MA)

Haoxiang Sun
Autonomous RACECAR Grand Prix
Sonoma Academy
(Santa Rosa, CA)

Anneliese Takeshige
Serious Gaming
Bronx High School of Science
(Flush, NY)

Katherine Tan
Building a CubeSat
Sierra Nevada Corp. Project
Proof School
(San Francisco, CA)

Wenson Tang
Building a CubeSat
Sierra Nevada Corp. Project
Bellaire High School
(Houston, TX)

Vivian Tao
Serious Gaming
Noble & Greenough School
(Natick, MA)
Seth Taylor
Embedded Security and Hardware
Hacking – MITRE Project
Governor’s School for Science & Mathematics (Honea Path, SC)

Connie Tian
Serious Gaming
Weston High School (Weston, MA)

Simon Traub
Medlytics
Raytheon I&S Project
Needham High School (Needham, MA)

Kaiji Uno
Medlytics
Raytheon I&S Project
Brookline High School (Brookline, MA)

Armaan Vakharia
Autonomous Cognitive Assistant
BAE Systems Project
Manalapan High School (Manalapan, NJ)

Elizabeth (Lily) Vaysman
Serious Gaming
Stuyvesant High School (New York, NY)

Nitin Vegesna
Autonomous RACECAR Grand Prix
Evergreen Valley High School (San Jose, CA)

Shreya Vinjamuri
Remote Sensing for Disaster Response
Evergreen Valley High School (San Jose, CA)

Johan Vonk
Remote Sensing for Disaster Response
Mountain View High School (Los Altos, CA)

Alexandra Wald
Medlytics
Raytheon I&S Project
Stuyvesant High School (Brooklyn, NY)

Avery Wang
Medlytics
Raytheon I&S Project
Commonwealth School (North Falmouth, MA)

Charlotte Wang
Embedded Security and Hardware
Hacking – MITRE Project
Acton-Boxborough High School (Boxborough, MA)

David Wang
Building a CubeSat
Sierra Nevada Corp. Project
Woodbury High School (Woodbury, MN)

Romario Williams
Autonomous RACECAR Grand Prix
Governor’s School at Innovation Park (Woodbridge, VA)

Graham Wilson
Building a CubeSat
Sierra Nevada Corp. Project
Lafayette High School (Lexington, KY)

Michael Wimmer
Autonomous RACECAR Grand Prix
CFA Academy (Salisbury, NC)
Kelly Zhou
Embedded Security and Hardware
Hacking – MITRE Project
Stuyvesant High School
(Fresh Meadows, NY)

Rebecca Zhu
Autonomous Cognitive Assistant
BAE Systems Project
Nashua High School South
(Nashua, NH)
Students
Ethan Acosta
Maegan Aljure
Megan Ameigh
Tokmem (TJ) Boutu
Hannah Finley
Ryan Hess
Zach Hill
Ayana Kaneko
Abrianna Makovec

Katie O’Rourke
Julia Sholar
Minnie Snoddy
Crimson Stambaugh
Myles Sylvester

Lead Instructors
Amna Greaves (MIT Lincoln Laboratory)
Sarah Willis (MIT Lincoln Laboratory)

Instructors
Karyn Lundberg (MIT Lincoln Laboratory)
Jon Schoenenberger (MIT Lincoln Laboratory)
Tommy Sebastian (MIT Lincoln Laboratory)
Saamiya Alam
Skyline High School
Sammamish, WA

Rebecca Ashmore
Blackstone Valley
Technical High School
North Grafton, MA

Athul Ashok
Chelmsford High School
North Chelmsford, MA

Jiayi Bai
Stuyvesant High School
New York, NY

Avik Banerjee
Rock Ridge High School
Ashburn, VA

Nigel Barnett
Raisbeck Aviation High School
Newcastle, WA

Esha Batchu
Grafton High School
Grafton, MA

Drake Bauernfeind
North Carolina School of Science and Mathematics
Tampa, FL

Rohit Chand
Blue Valley West High School
Overland Park, KS

Aditya Chandel
Middlesex County Academy
Monroe, NJ

Naz Chaudry
AI-Noor Academy
Harrisville, RI

Junyang Chen
Vanguard College Prep Academy
Modesto, CA

Joshua Cheng
Algonquin Regional High School
Northborough, MA

Samuel Cheng
School for the Talented and Gifted at Townview Magnet Center
Dallas, TX

Nathanael Cho
South High School
Torrance, CA

David Choi
Boston Latin
Boston, MA

Myung Suh Choi
Monta Vista High School
Cupertino, CA

Seungah Choi
Monta Vista High School
Cupertino, CA

Rohan Chopra
Brookline High School
Brookline, MA

Maxim Chowdhury
Bronx High School of Science
Jackson Heights, NY

Meghaj Chowdhury
Fairfield Warde High School
Fairfield, CT

Albert Chu
Phillips Exeter Academy
Sunnyside, CA

Laasya Chukka
Lynbrook High School
Santa Clara, CA

Bryant Chung
Arnold O. Beckman High School
Irvine, CA

Renee Daciuk
Palos Verdes Peninsula High School
Rancho Palos Verdes, CA

Jinzi Danjul
Independence High School
Frisco, TX

Anubhab Das
Lexington High School
Lexington, MA

Sai Dasari
Neuqua Valley High School
Naperville, IL

Satvik Dasari
Westwood High School
Austin, TX

Rucha Dave
Nashua High School South
Nashua, NH

Vance Degen
Baltimore, MD

Gurapran Dhatt
Carroll Senior High School
Southlake, TX

Aryamaan Dhomme
University High School of Science and Engineering
South Windsor, CT

Shaedil Diler
Brooklyn Technical High School
New York, NY

Vanya Dimri
Redmond High School
Redmond, WA

Risto Djishev
Energy Institute High School
Houston, TX

Ryan Draskovits
Excel Academy Charter High School
East Boston, MA

Rhein Ferdous
Lexington High School
Lexington, MA

Mehul Gajula
Amador Valley High School
Pleasanton, CA

Richard Gao
School for the Talented and Gifted
Allen, TX

Alex Gerber
Evanston Township High School
Evanston, IL

George Granskog
Illinois Math & Science Academy
Itasca, IL

Alex Gu
Ashland High School
Ashland, MA

Gabriel Guo
Camas High School
Camas, WA

Rachna Gupta
Illinois Math & Science Academy
Hoffman Estates, IL

Ritika Gurjar
Arlington High School
Arlington, MA

Henry Gussis
Niles West High School
Lincolnwood, IL

Hannah Han
Wayland High School
Wayland, MA

James Han
West High School
Torrance, CA

Nadine Han
Boston Latin
Boston, MA

Anusha Handa
Andover High School
Andover, MA

Sidhanth Holalkere
Commonwealth School
Sharon, MA

Ethan Hu
McLean High School
Vienna, VA

Trung Huynh
Portola High School
Irvine, CA

Joon Hwang
Lynbrook High School
San Jose, CA

Edwin Ing
Walter Payton College Preparatory High School
Chicago, IL

Anisha Jain
Thomas Jefferson High School for Science and Technology
Oakton, VA

Jazmyn James
South Fork High School
Palm City, FL
MIT Beaver Works Summer Institute
BWSI 2020 piPACT Independent Project

Class of 2020

Rakshith Jeyaraman
Hillsborough High School
Hillsborough Township, NJ

Andrew Jiang
Strongsville High School
Rego Park, NY

Alexandros Jumes
Newton South High School
Chestnut Hill, MA

Aaron Jung
California Academy of Mathematics and Science School
Palos Verdes Estates, CA

Edward Jung
University High School
Irvine, CA

Neil Kachappilly
Nashua High School South
Nashua, NH

Jackson Kahn
Bronx High School of Science
New York, NY

Dongkyun Kang
Bowling Green High School
Bowling Green, KY

Venkatraghavan Kannan
Detroit Country Day Upper School
Novi, MI

Mukilan Karthikeyan
Morris Hills High School
 Parsippany, NJ

Pranav Keani
Dougherty Valley High School
San Ramon, CA

Ellena Kim
Bloomington South High School, Bloomington, IN

Junha Kim
Troy High School
Irvine, CA

Saya Kim-Suzuki
Fieldston School
New York, NY

Udithi Kothapalli
Saint Anthony’s High School
Port Jefferson Station, NY

Aditya Krishnamoorthy
University High School
Irvine, CA

Soham Kulkarni
Skyline High School
Sammamish, WA

Shoumik Kundu
Chelmsford High School
Chelmsford, MA

Ethan Ky
Governor’s School at Innovation Park
Manassas, VA

David Labrique
Loch Raven High School
Towson, MD

Audrey Lee
Mira Costa High School
Manhattan Beach, CA

David Lee
Shrewsbury High School
Northborough, MA

Nicholas Leung
Haverhill High School
Haverhill, MA

Winston Lee
Wayne Valley High School
Wayne, NJ

Winston Lewis
Framingham High School
Framingham, MA

Andrew Li
Newton South High School
Waban, MA

Collin Li
Great Neck South High School
Great Neck, NY

Justin Li
Del Norte High School
San Diego, CA

Alice Liu
John L. Miller Great Neck North High School
Great Neck NY

Clarise Liu
Massachusetts Academy of Math & Science
Worcester, MA

Jessica Liu
Kinkaid School
Houston, TX

Olivia Ma
Thomas Jefferson High School for Science and Technology
Vienna, VA

Wesley Maa
Palo Alto Senior High School
Palo Alto, CA

Siddharth Maddhula
BASIS Independent Silicon Valley
Sunnyvale, CA

Srikar Mallajosyula
Wilmington High School
Wilmington, MA

Praneeth Malyala
Thomas Jefferson High School for Science and Technology
Ashburn, VA

Isaiah Maningas
Saint Joseph High School
Somerset, NJ

Claudia Markel
Lafayette High School
Lexington, KY

Emma Mascillaro
Manalapan High School
Freehold, NJ

David McElfresh
Derry Area High School
Latrobe, PA

Aidan Melvin
Science & Mathematics Academy at Aberdeen
Joppa, MD

John Min
Los Alamitos High School
Los Alamitos, CA

Ray Min
Pineview School for Gifted
Sarasota, FL

Kristoff Misquitta
Stuyvesant High School
Forest Hills, NY

Porter Moody
Wayland High School
Wayland, MA

Luke Moon
Jefferson Forest High School
Forest, VA

Ian Morrill
Science & Mathematics Academy at Aberdeen
Bel Air, MD

Kyle Mui
Bronx High School of Science
Oakland Gardens, NY

Zawad Munshi
Bronx High School of Science
Bronx, NY

Praneet Nadella
Nashua High School South
Nashua, NH

Alexandra Oh
Bronx High School of Science
New York, NY

Jackson Oliver
Bret Harte High School
Hood River, OR

Bronwen Olson
Needham High School
Needham, MA

Sam O’Nuallain
Needham High School
Needham, MA

Nitya Parida
Round Rock High School
Cedar Park, TX

JuWon Park
Illinois Math & Science Academy
Bloomington, IL

Vibhav Peri
Skyline High School
Sammamish, WA

Kevin Polackal
Lexington High School
Lexington, MA

Sarah Pollack
Bronx High School of Science
New York, NY
Hanzalah Qamar
Al-Noor Academy
Cumberland, RI

Jerry Qian
Ithaca High School
Ithaca, NY

Aditya Raman
Northview High School
Johns Creek, GA

Rithik Reddy
Saint John’s High School
Boylston, MA

Steve Rosario
Saint John’s Preparatory School
Andover, MA

Joseph Rosenfeld
Yeshiva University High School for Boys
Silver Spring, MD

Shruti Roy
Bridgewater-Raritan High School
Bridgewater, NJ

Michael Rybalkin
Central Bucks High School East
Jamison, PA

Abhijeet Saha
Stuyvesant High School
New York, NY

Samrat Sahoo
Rick Reedy High School
Frisco, TX

Neil Sanipara
Mississippi School for Math & Science
Vicksburg, MS

Yash Saxena
Plano West Senior High School
Plano, TX

Aparnaa Senthilnathan
Bronx High School of Science
South Richmond Hill, NY

Allison Seo
Thomas Jefferson High School for Science and Technology
Springfield, VA

Kevin Shi
Ingleside High School
Bothell, WA

Manxi Shi
BASIS Independent Silicon Valley
San Jose, CA

Rishi Sinha
John P. Stevens High School
Edison, NJ

Savita Sivapalan
Bronx High School of Science
Bronx, NY

Sadiq Sobur
Bronx High School of Science
Bronx, NY

Gary Song
Martin Luther King High School
Riverside, CA

Karen Song
Thomas Jefferson High School for Science and Technology
McLean, VA

Matthew Song
Weston High School
Westford, MA

Nidhi Sonwalkar
Centennial High School
Frisco, TX

Leo Stephenson
School for the Talented and Gifted
Dallas, TX

Michael Sterk
New Milford High School
New Milford, CT

Alexander Stoyanov
Belmont High School
Concord, MA

Bharathan Sundar
Algonquin Regional High School
Southboro, MA

Varun Suraj
Lexington High School
Lexington, MA

Katherine Tan
Proof School
San Francisco, CA

Hannah Tandang
Acton-Boxborough High School
Acton, MA

Lawrence Tang
Belmont Hill School
Hopkinton, MA

Wenson Tang
Bellaire High School
Bellaire, TX

Kaiji Uno
Brookline High School
Brookline, MA

Ojasw Upadhyay
American High School
Fremont, CA

Dhriti Vadakonda
River Hill High School
Clarksville, MD

Sai Vedagiri
High Technology High School
Fremont, CA

Shashank Vinay Kumar
Texas Academy of Mathematics and Science
Frisco, TX

Johan Vonk
Mountain View High School
Los Altos, CA

Charlotte Wang
Acton-Boxborough High School
Boxborough, MA

David Wang
Woodbury High School
Woodbury, MN

Haoyu Wang
Boston University Academy
Brookline, MA

Shreyas Yavuz
American High School
Fremont, CA

Serena Yeh
BASIS Independent Silicon Valley
Fremont, CA

Emily Yin
Shenendehowa High School
Rexford, NY

Jongmin Yoon
Valor Christian School International
Ann Arbor, MI

Cole Young
Homeschooled
Huntsville, AL

Tiffany Yu
Boston Latin
Boston, MA

Eloise Zeng
Wellesley High School
Wellesley, MA

Dean Zhang
Newton South High School
Newton, MA

Vincent Zhou
Charlotte Latin School
Charlotte, NC

Rebecca Zhu
Nashua High School South
Nashua, NH
MIT Beaver Works Summer Institute

MIT Beaver Works
300 Technology Square (2nd floor)
Cambridge, MA 02139
bwsi-info@mit.edu